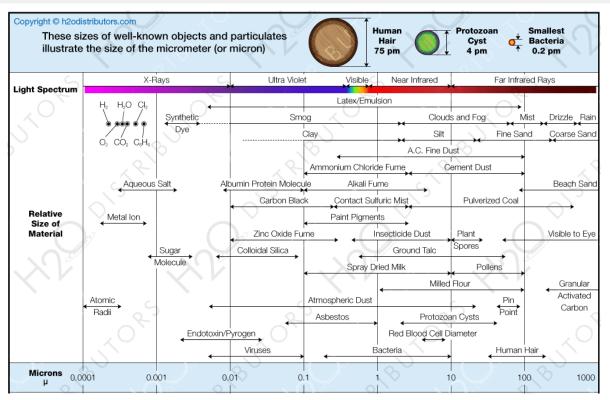


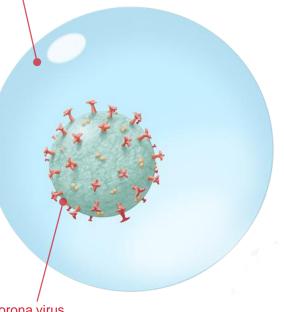
Filtration Solutions in COVID19 times

AAF-Lufttechnik GmbH

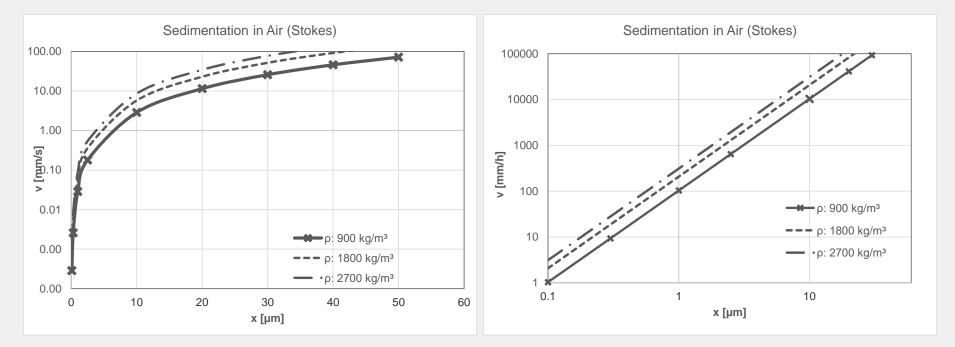
Dr.-Ing. Heiko Manstein (Application Engineer DACH) heiko.manstein@aafeurope.com; +49 170 18 132 60


Dr.-Ing. Marc Schmidt (Vice President Technologies Europe) marc.schmidt@aafeurope.com; +49 175 17 788 78

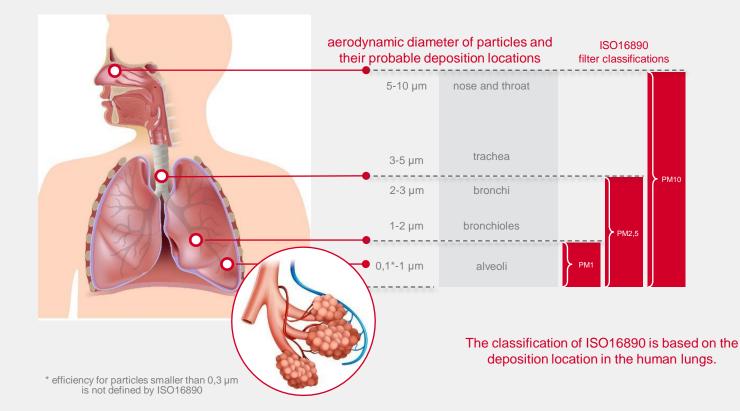
Stefan Laub (R&D Project Engineer) stefan.laub@aafeurope.com; +49 175 18 788 66


Odenwaldstr. 4 64646 Heppenheim Germany

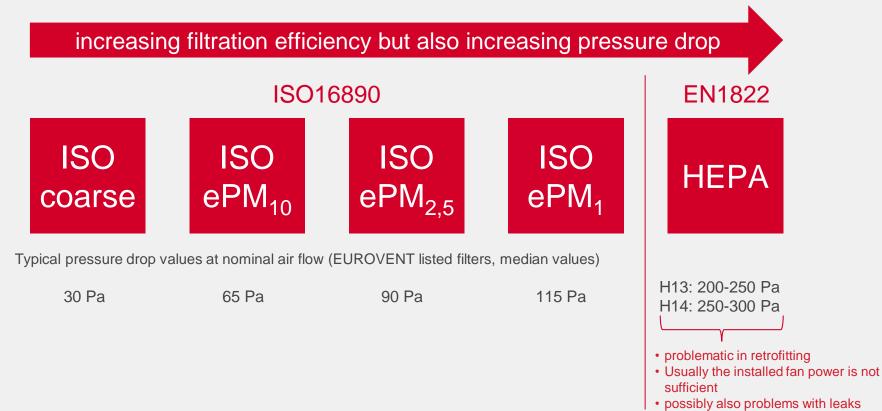
Particle sizes


liquid droplet >1 μm (saliva – water, sugar, salts, proteins) when exhaled, drying out down to <1 μm

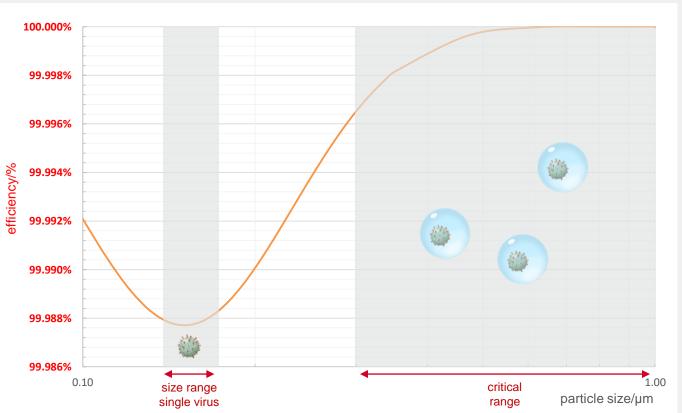
Corona virus Ø approx. 0,130 µm


Particle Settling Velocity (Sedimentation)

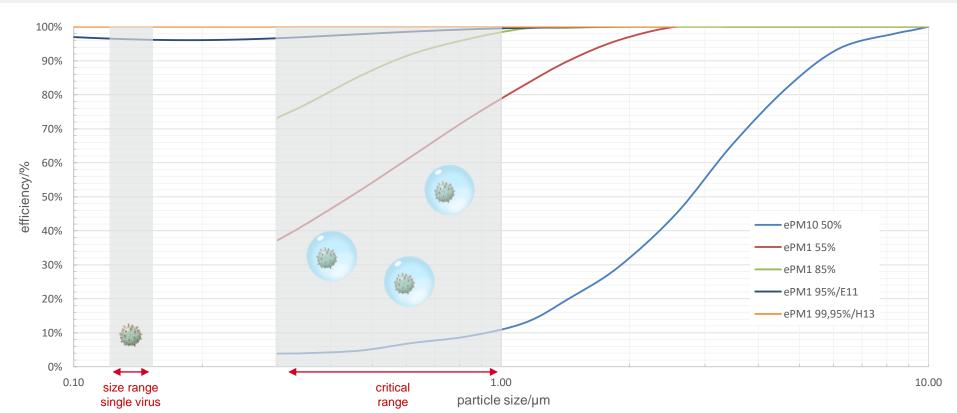
Stationary settling velocity, Stokes laminar flow regime, 20°C, 1bar



Particle size ranges PM₁₀, PM_{2,5} und PM₁



Actual filter clases – filtration efficiency and pressure drop


Filter efficiency H13 HEPA filter for critical particle sizes

- HEPA filters are well suitable to filter viruses and virus loaded particles.
- As higher the filter class as better.
 - H13 reducing virus load by >99,95%.
 - H14 reducing virus load by >99,995%.
- But HEPA filters generate relatively high pressure drop compared to filters usually used in air handling units.
- Although HEPA filter installation would make a lot of sense in terms of filtration efficiency, the high pressure drop would require an upgrade of the fan and the whole air handling unit and duct work might run into air leakage problems.

Filter efficiencies for critical particle sizes

Ventilation and air exchange

ASR 3.6: Supply air that is conducive to health - remove material loads, moisture loads, heat loads - CO₂ content as a quality criteria

Natural ventilation:

Window ventilation: burst ventilation, continuous ventilation free ventilation (one-sided ventilation, cross ventilation)

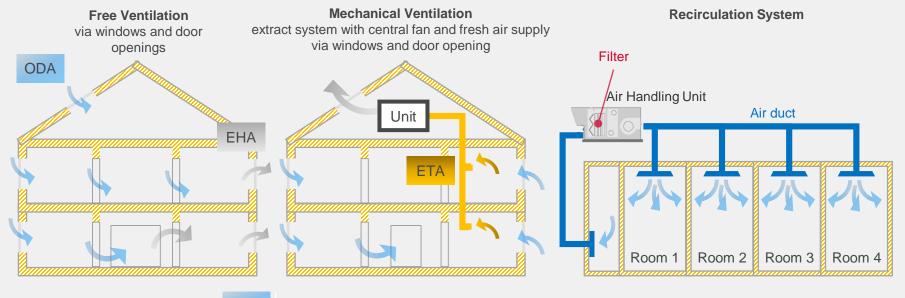
Mechanical ventilation:

Must ensure CO_2 content of <1000ppm Must be state of the art (VDI6022)

Air change and number of air changes:

Exchange of all air within an hour

With virual load:


Dilution of the aerosol = reduction of the risk of infection

	Exemplary typical air exchange rates from practice (1 / h)				
	Min.	Max.			
Living room	0,5	3,6			
Class room	2				
Office space	1	4-8			
Movie theater		5-8			
Shower room		15-25			

Ventilation options

Remove material loads, moisture loads, heat loads - free and mechanical ventilation, recirculation

Ventilation and air changes

So far ventilation was focussing on managing indoor:

- odors
- humidity
- temperature
- CO₂ concentration (easy to measure quality criteria for "fresh" air)

Diluting indoor air with fresh virus free air is reducing virus load:

- → More ventilation
- → Lower risk!

Limiting factors:

- fan capacity
- comfort (draft)
- noise level
- energy consumption

Air Change Rate as measure for ventilation:

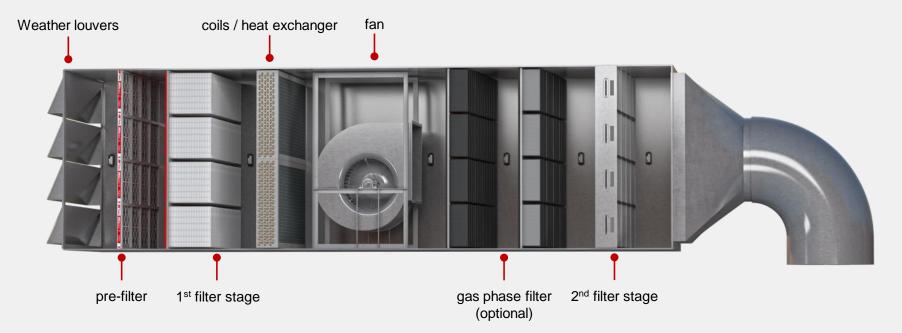
$$ACR = \frac{\dot{V}}{V_{Room}}$$

ACR	Air Change Rate (1/h)
V _{Room}	Volume of room (m ³)
<i></i> <i>V</i>	Volume flow (m ³ /h)

Example:

- volume of room: 5,0 x 4,0 x 3,5 = 70 m³
- volume flow: 210 m³/h
- ACR: 210/70 = 3 (1/h)
- 3-times per hour the air is changed in the room, e.g. one air change every 20min

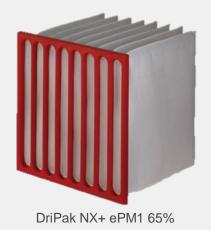
Air Change Rates (ACR) from literature I


building / room		R (1/h)	minimum air volume flow per person	standard	
	min max		in (m ³ / (h x person)] DIN EN1946-2		
Residential buildings / living spaces	0,5	3,6		DIN 13779 (withdrawn)/ EN 12831	
Residential building with mechanical ventilation	>1			DIN 13779 (withdrawn)/ EN 12831	
Residential buildings> 3 floors	>2			DIN 13779 (withdrawn)/ EN 12831	
Kitchens	1,5			DIN 13779 (withdrawn)/ EN 12831	
Bathroom	1,5			DIN 13779 (withdrawn)/ EN 12831	
Lecture halls		6-8		DIN EN 16798-3; ASR 3.6	
Classroom	2			DIN EN 16798-3; ASR 3.6	
Offices	1	4-8		DIN EN 16798-3; ASR 3.6	
Movie theater		5–8		VDI 2082	
Restaurants		4–8	40–60	VDI 2082	
Salesrooms		4–8		VDI 2082	
Gym		4–6			
Workshops	4–6	10–20		VDI 2082	
Commercial kitchens		15–30	6–60	VDI 2052	
Fish and meat preparation			25	VDI 2052	
Vegetable and salad preparation			25	VDI 2052	
Cold kitchen			6–10	VDI 2052	
Storage			6 m³/(h x m²)	VDI 2052	
Distribution rooms			60	VDI 2052	

Air Change Rates (ACR) from literature II

building / room	ACF min	R (1/h) max	minimum air volume flow per person in (m ³ / (h x person)] DIN EN1946-2	standard
Swimming pool				VDI 2089
Entrance				VDI 2089
Showers / sanitary facilities		15–25		VDI 2089
Laboratory	2–5	8–15		VDI 2051
Chemical rooms		5		VDI 2051
Pressurized gas cylinder rooms		2		VDI 2051
Hospital		5–8		DIN 1946- 4
OP	-		measures	DIN 1946- 4
OR with gas application			40+ 150 per patient	DIN 1946- 4
Adjacent rooms			40	DIN 1946- 4
Patient room			40+ 100 per patient	DIN 1946- 4
Ice sports facility with spectators / multi-purpose hall		4–6	30–40	VDI 2075
Ice rink without spectators	1,5		30–40	VDI 2075
Take a shower		15–25		VDI 2075
Changing rooms		6–8	50	VDI 2075
Conditioning rooms		4–6		VDI 2075
Slope bar			50	VDI 2075
Gastronomy			50	VDI 2075

Air Handling Unit



Preferred filters

Highly separating and at the same time energy efficient!

filter	depth	filter area	initial pressure drop		onsumption / ification	dust holding capacity
	mm	m ²	Ра	kWh	Eurovent	g
DriPak NX+ ePM1 65%	635	7,2	55	720	A+	1700
VariCel Aero V HXL ePM1 95%	440	25,7	115	1390	А	1150


Preferred filters

1st Filter Stage DriPak[®] NX+ ePM1 65%

- Highest media area of a highly separating filter layer for fine particles in a pocket filter.
- Low initial resistance energy class A +.
- Fully synthetic medium.

2nd Filter Stage VariCel[®] Aero V HXL ePM1 95%

- Increased protection against airborne disease transmission.
- High filtration efficiency (level EPA filter class E11), min. 95% filtration efficiency at 0,3 $\mu m.$
- Low initial resistance energy class A.
- The extra large filter area of the VariCel Aero V HXL filter (440mm depth) not only offers increased filtration efficiency compared to the standard filter (292mm depth), but also a further increase in dust storage capacity and, due to the lower pressure drop, even lower operating costs.
- Arrangement of the water-repellent filter medium in vertical folds for optimal moisture removal.
- A burst protection on the downstream side ensures increased stability and robustness.

Combined Efficiency on virus-laden aerosols:

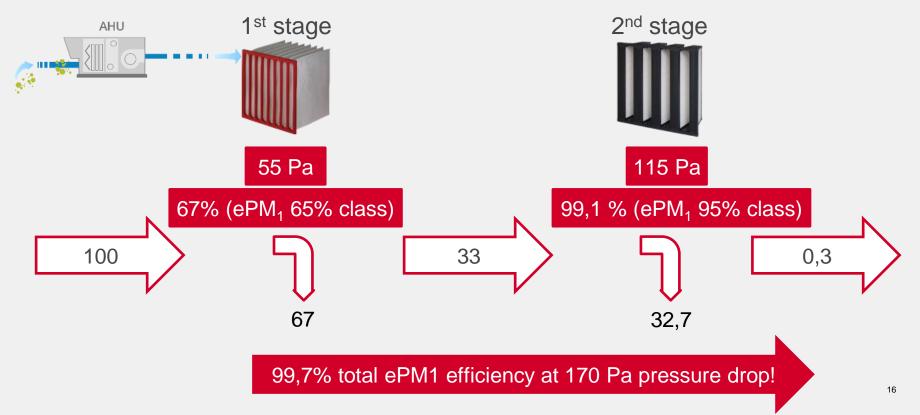
99,7%

Number of airchanges needed to achieve 99,7% efficiency

#1

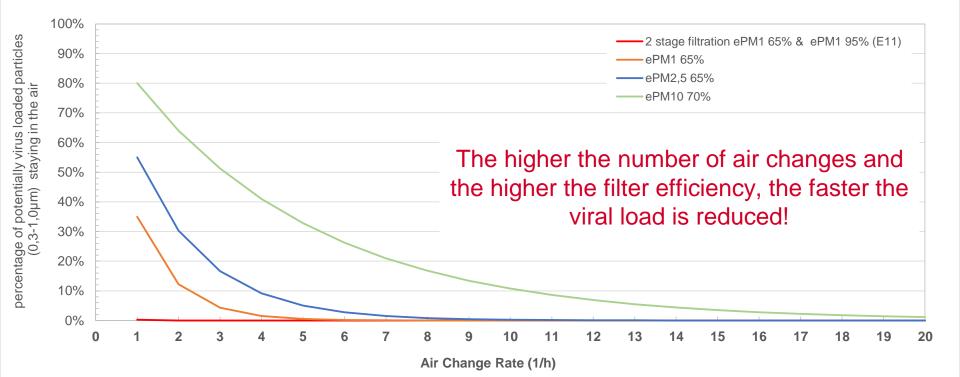
Δpi Initial combined pressure drop:

170 Pa

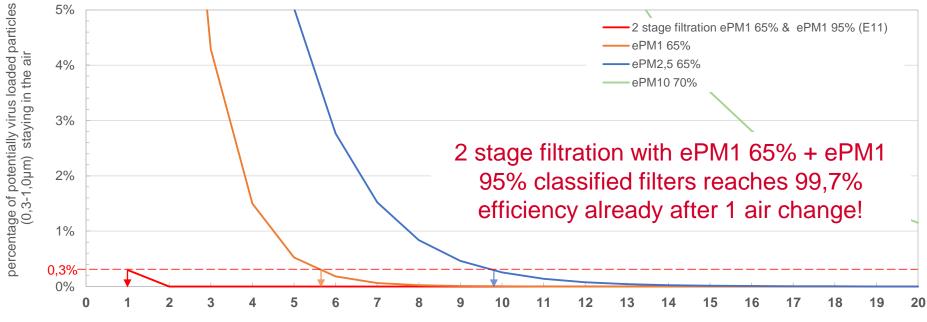


Combined DHC (Dust Holding Capacity)

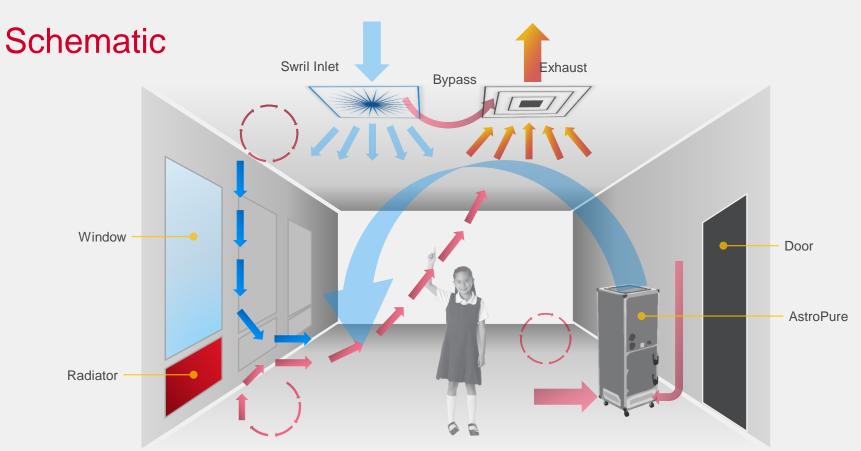
2.850 q



Filter stages in air handling units



Filtration efficiency depending on Air Change Rate and Filter class



Filtration efficiency depending on Air Change Rate and Filter class

Air Change Rate (1/h)

AstroPure Range

AstroPure: Nominal cleanable room volume = mathematical estimate, Effectiveness depends on the place of installation and extraction efficiency

	AP 700	AP 2000	AP 4000	AP 6000	AP F2F
					International Contractions
Maximum Flow Rate [m ³ /h]	700	2000	4000	6000	1200
ACH [1/h]		Nominal cleanable	e room volume [m ³]		
4	175	500	1.000	1.500	-
6	117	333	667	1.000	-
10	70	200	400	600	-

Example Office

Office

- Area = 12 m²
- Height = 2,5 m
- Volume = 30 m³
- ACR = 6
- > Air flow = 360 m³/h

Example Meeting Room

Meeting Room

- Area = 30 m²
- Height = 2,5 m
- Volume = 75 m³

• ACR = 6

> Air flow = 450 m³/h

Example Open Plan Office

Open Plan Office

- Area = 240 m²
- Height = 3,5 m
- Volume = 840 m³
- ACR = 6
- > Air flow = 5.040 m³/h

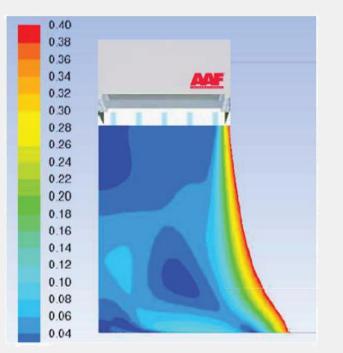
Example Cash Desk

Cash Desk

AstroPure F2F

Max. Air flow = $1.200 \text{ m}^3/\text{h}$

Variable speed control

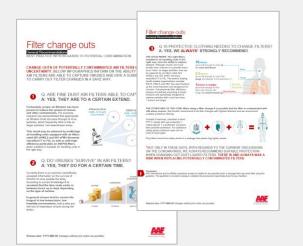

RGB LED workspace light

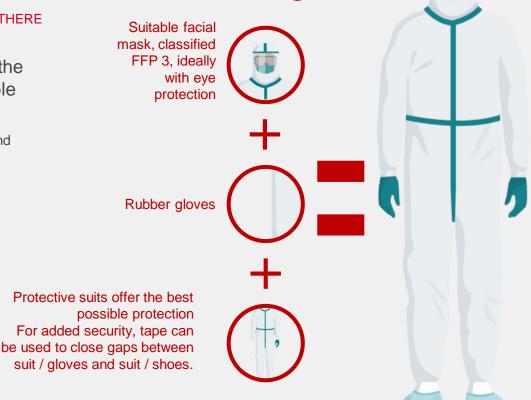
Remote control

Example Cash Desk – Working Principle

AstroPure Air Purifiers

type		AP 700	AP 2000	AP 4000	AP 6000	AP F2F
max flow rate	m³/h	700	2000	4000	6000	1200
variable speed control	-	yes	yes	yes	yes	yes
standard pre-filter	-	ISO coarse 70%	ISO coarse 70%	ISO coarse 70%	ISO ePM1 85% (cartridge)	ISO coarse 70%
optional pre-filter (VDI6022)	-	ISO ePM10 70%	ISO ePM10 70%	ISO ePM10 70%	-	ISO ePM10 70%
gas phase filter	-	ISO coarse 65%	ISO coarse 65%	ISO coarse 65%	-	-
HEPA filter class (EN1822)	-	H14	H14	H14	H14	H14
UV-C stage	-	yes	optional	optional	-	-
WxDxH	mm	800 x 715 x 1300	770 x 720 x 1630	1440 x 720 x 1630	2000 x 2000 x 2000	1200 x 600
electrical power	kW	0,4 (single phase)	0,5 (single phase)	1,0 (single phase)	5,5 (three phase)	0,4 (single phase)
sound pressure level	dB(A)	< 54	35 - 52	35 - 52	-	35 - 52




Personal Protective equipment for filter changes

WHEN REPLACING POTENTIALLY CONTAMINATED FILTERS, THERE IS AND ALWAYS A RISK.

Not only in view of the current discussion about the coronavirus, we ALWAYS RECOMMEND suitable protection when changing dust-laden filters.

For more information, check out our infographics with background information and best practices.

It's filtration time!

Filtration Solutions in COVID19 times

AAF-Lufttechnik GmbH

Dr.-Ing. Heiko Manstein (Application Engineer DACH) heiko.manstein@aafeurope.com; +49 170 18 132 60

Dr.-Ing. Marc Schmidt (Vice President Technologies Europe) marc.schmidt@aafeurope.com; +49 175 17 788 78

Stefan Laub (R&D Project Engineer) stefan.laub@aafeurope.com; +49 175 18 788 66

Odenwaldstr. 4 64646 Heppenheim Germany